deeptime.markov.tools.flux.flux_matrix¶
- deeptime.markov.tools.flux.flux_matrix(T, pi, qminus, qplus, netflux=True)¶
Compute the TPT flux network for the reaction A–>B.
- Parameters:
T ((M, M) ndarray) – transition matrix
pi ((M,) ndarray) – Stationary distribution corresponding to T
qminus ((M,) ndarray) – Backward comittor
qplus ((M,) ndarray) – Forward committor
netflux (boolean) – True: net flux matrix will be computed False: gross flux matrix will be computed
- Returns:
flux – Matrix of flux values between pairs of states.
- Return type:
(M, M) ndarray
See also
committor.forward_committor
,committor.backward_committor
Notes
Computation of the flux network relies on transition path theory (TPT) [1]. Here we use discrete transition path theory [2] in the transition matrix formulation [3]. The central object used in transition path theory is the forward and backward comittor function.
The TPT (gross) flux is defined as
\[f_{ij}=\left \{ \begin{array}{rl} \pi_i q_i^{(-)} p_{ij} q_j^{(+)} & i \neq j \\ 0 & i=j \end{array} \right . \]The TPT net flux is then defined as
\[f_{ij}=\max\{f_{ij} - f_{ji}, 0\} \:\:\:\forall i,j. \]References