deeptime.clustering

The clustering package contains clustering algorithms that can be used for discretization of time series.

Estimators

KMeans(n_clusters[, max_iter, metric, ...])

Clusters the data in a way that minimizes the cost function

MiniBatchKMeans(n_clusters[, batch_size, ...])

K-means clustering in a mini-batched fashion.

RegularSpace(dmin[, max_centers, metric, n_jobs])

Clusters data objects in such a way, that cluster centers are at least in distance of dmin to each other according to the given metric.

BoxDiscretization(dim, n_boxes[, v0, v1])

An n-dimensional box discretization of Euclidean space.

Models

ClusterModel(cluster_centers[, metric, ...])

A generic clustering model.

KMeansModel(cluster_centers, metric[, ...])

The K-means clustering model.

BoxDiscretizationModel(cluster_centers, v0, ...)

Model produced by BoxDiscretization.

Functions

kmeans_plusplus(data, n_clusters[, metric, ...])

Performs kmeans++ initialization.

Adding a new metric

metrics

Registry of available metrics.

MetricRegistry()

Registry of available metrics.