function triple_well_1d

deeptime.data.triple_well_1d(h=0.001, n_steps=500)

A simple one-dimensional triple-well potential landscape. It is given by the stochastic differential equation

dXt=V(Xt)dt+σ(t,Xt)dWt\mathrm{d}X_t = \nabla V(X_t) \mathrm{d}t + \sigma(t, X_t)\mathrm{d}W_t

with WtW_t being a Wiener process, σ=0.75\sigma = 0.75, and the potential VV being given by

V(x)=524.82x+41.4251x227.5344x3+8.53128x41.24006x5+0.0684x6.V(x) = 5 - 24.82 x + 41.4251 x^2 - 27.5344 x^3 + 8.53128 x^4 - 1.24006 x^5 + 0.0684 x^6.

(Source code, png, hires.png, pdf)

../../_images/plot_triple_well_1d.png
Parameters:
  • h (float, default=1e-3) – Integration step size.

  • n_steps (int, default=500) – Default number of integration steps per evaluation.

Returns:

system – The system.

Return type:

TimeIndependentSystem