deeptime.markov.tools.estimation.error_perturbation¶
- deeptime.markov.tools.estimation.error_perturbation(C, S)¶
Error perturbation for given sensitivity matrix.
- Parameters:
C ((M, M) ndarray) – Count matrix
S ((M, M) ndarray or (K, M, M) ndarray) – Sensitivity matrix (for scalar observable) or sensitivity tensor for vector observable
- Returns:
X – error-perturbation (for scalar observables) or covariance matrix (for vector-valued observable)
- Return type:
float or (K, K) ndarray
Notes
Scalar observable
The sensitivity matrix \(S=(s_{ij})\) of a scalar observable \(f(T)\) is defined as
\[S= \left(\left. \frac{\partial f(T)}{\partial t_{ij}} \right \rvert_{T_0} \right) \]evaluated at a suitable transition matrix \(T_0\).
The sensitivity is the variance of the observable
\[\mathbb{V}(f)=\sum_{i,j,k,l} s_{ij} \text{cov}[t_{ij}, t_{kl}] s_{kl} \]Vector valued observable
The sensitivity tensor \(S=(s_{ijk})\) for a vector valued observable \((f_1(T),\dots,f_K(T))\) is defined as
\[S= \left( \left. \frac{\partial f_i(T)}{\partial t_{jk}} \right\rvert_{T_0} \right) \]evaluated at a suitable transition matrix \(T_0\).
The sensitivity is the covariance matrix for the observable
\[\text{cov}[f_{\alpha}(T),f_{\beta}(T)] = \sum_{i,j,k,l} s_{\alpha i j} \text{cov}[t_{ij}, t_{kl}] s_{\beta kl} \]